Set maps, umbral calculus, and the chromatic polynomial
نویسندگان
چکیده
منابع مشابه
Set maps, umbral calculus, and the chromatic polynomial
In order to motivate our results we will begin by describing two classical expansions of the chromatic polynomial. Let G be a simple graph with finite vertex set V . Let χG(x) be the number of proper colorings of G with x colors (assignments of colors 1, 2, . . . , x to the vertices of G so that no two adjacent vertices have the same color). If e is an edge of G, let G\e be G with e removed, an...
متن کاملul 2 00 5 Set maps , umbral calculus , and the chromatic
Some important properties of the chromatic polynomial also hold for any polynomial set map satisfying pS(x + y) = ∑ T⊎U=S pT (x)pU (y). Using umbral calculus, we give a formula for the expansion of such a set map in terms of any polynomial sequence of binomial type. This leads to several new expansions of the chromatic polynomial. We also describe a set map generalization of Abel polynomials.
متن کاملUmbral Calculus, Binomial Enumeration and Chromatic Polynomials
We develop the concept of partition categories, in order to extend the Mullin-Rota theory of binomial enumeration, and simultaneously to provide a natural setting for recent applications of the Roman-Rota umbral calculus to computations in algebraic topology. As a further application, we describe a generalisation of the chromatic polynomial of a graph. 0. Introduction. In the last 20 years, the...
متن کاملFormal Calculus and Umbral Calculus
We use the viewpoint of the formal calculus underlying vertex operator algebra theory to study certain aspects of the classical umbral calculus. We begin by calculating the exponential generating function of the higher derivatives of a composite function, following a very short proof which naturally arose as a motivating computation related to a certain crucial “associativity” property of an im...
متن کاملNatural Exponential Families with Polynomial Variance Function and Umbral Calculus
In this paper we use the Umbral Calculus to investigate the relation between natural exponential families and Sheeer polynomials. We give a new proof for the classiication of univariate natural exponential families with quadratic variance function. We also show how our methods apply to natural exponential families with variance function of any order and to multivariate natural exponential famil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2008
ISSN: 0012-365X
DOI: 10.1016/j.disc.2007.07.009